SPRAY APPLIED GEOPOLYMER STRUCTURAL REPAIR MORTAR ON US 23 UNDERPASS

David Keaffaber, P.E. GeoTree Region Manager

Jason DeRuyver, P.E. MDOT Engineering Manager, Region Support

WELCOME TO GEOTREE'S AND MDOT'S MAINTENANCE TRIAL

David Keaffaber, P.E. - PRESENTER

- Midwest Region Manager for GeoTree, a division of ClockSpring|NRI, specializing in the technical sales of GeoSpray[®] lining mortars
- B.S. in Agricultural and Biological Engineering from Purdue University, West Lafayette, Indiana
- Over 30+ years of direct experience in drainage/hydraulic design, erosion control, and storm and sanitary conveyance structures
- Overview of Geopolymer material:
 - What is a geopolymer
 - Application and benefits
 - Advantages over other trenchless methods
 - Project case studies

Structure Maintenance

<u>Brian Zakrzewski</u>, Structure Preservation Section Engineer 517-243-9473

Preservation, RFA, Structural Design/Maintenance, Technology, and Materials & Equipment Support

Provides technical expertise to MDOT regions, local agencies, and consultants for structural maintenance, structure design for Request for Action, trials for new technologies in equipment and materials for structure maintenance, and training.

<u>Jason DeRuyver</u>, Priority Preservation and Maintenance Support Unit Engineer 517-242-2988

<u>Andrew Zevchak</u>, Priority Preservation Engineer 517-256-8439

<u>Jacob Creisher</u>, Structure Maintenance Engineer 517-243-7821

<u>Aaron Porter</u>, Structure Maintenance Support Coordinator 517-242-5788

Structure Maintenance

- Maintenance Resource
- Develop Standards and Specifications
- Provide Technical Support
- Develop Contracts
- Investigate New Materials and Methods
- Design and Detail Complex Repairs
- Liaisons with Industry Partners

AASHTO Transportation System Preservation Technical Services Program (TSP2)

- 4 Regional Partnerships Monthly Teleconference Meetings
 - Business MWBPP 1st Tuesday @1:30 pm EST
 - Technical Presentations/Discussion 2 pm EST
 - Innovative Products/Practices
 - Preservation Challenges
 - Current Topics
 - Best Practices

Regional Partnership Meetings

Annual

National Bridge Preservation Partnership Meeting

• Every 4 years (or so . . .)

AASHTO TSP2 Bridge Preservation Program

Principal mission is to serve as a clearinghouse with comprehensive and up-to-date information on efficient and effective preservation measures that enhance highway performance and extend useful life.

Partnerships Collaboration & Cooperation

State Departments of Transportation

Local Agencies

FHWA

Academia

Industry

Consultants

Officers

Office Name Organization Sarah Wilson Illinois DOT Chair (State Rep) Jason DeRuyver Michigan DOT Vice-Chair (State Rep) Drew Storey Clark Dietz Vice-Chair (Industry) Secretary / Treasurer (State Rep) Mike Brokaw Ohio DOT

Organization

Directors Name

Mike Brokaw	Ohio DOT
Matthew Keilson	EMSEAL
Patrick Conner	Indiana LTAP (Purdue)
Trina Davidson	South Dakota DOT
Jason DeRuyver	Michigan DOT
Nick Graziani	Watson Bowman
Joe Stanisz	Iowa DOT
Drew Storey	Clark Dietz
Glenn Washer	University of Missouri - Columbia
Sarah Wilson	Illinois DOT

Illinois DOT

Representation State Agency Director At-Large Director Local Agency Director State Agency Director State Agency Director **Industry Director** State Agency Director **Industry Director** Academic Director State Agency Director

Transportation System Preservation
Technical Services Program

Bridge Preservation Blog

"A Conversation About Bridge Preservation"

https://blog.pavementpreservation.org/

A Conversation with Wayne Harrall, Kent
County, and Jason DeRuyver, Michigan DOT

Current Working Groups

- Regional Working Groups
- Bridge Inspection Program Managers

National Working Groups

- Bridge Deck Preservation NWG
- Bridge Preservation BMS NWG
- Bridge Preservation Outreach & Communication
- Construction Quality of Bridge Preservation NWG
- Innovative Technology Demonstration (ITD) NWG
- Local Agency Outreach NWG

Local Agency Outreach Working Group

- Increase preservation of Local Infrastructure Assets.
- Provide education opportunities to Local Agencies.
- 40+ members composed of DOTs, County and City Engineers, FHWA, LTAPs, Academia and Industry.

TSP2.ORG

TSP2.ORG

Archived video presentations from annual meetings

Sealing Panel Discussion	Sondag, Sarah; Peters, Walt	2019-10-17	7.
▶ Installation of very early strength LMC overlays	Martens, Pat	2019-10-16	To Lake
► MidWest Bridge Deck DeteriorationTPF 5(432)	Oliva, Bill	2019-10-16	FOR
Chloride Testing & Hydro Demolition	Pilarski, Paul	2019-10-16	
Protocols for Concrete Bridge Deck Protections & Treatments	Bektas, Basak	2019-10-15	POP Lides
► Installation of very early strength LMC overlays	Martens, Pat	2019-10-15	POP Made
Sealing Panel Discussion Sarah Sondag (Minnesota DOT)	Peters, Walt	2019-10-15	POP MARK
▶ Bridge Deck Preservation Working Group	Welch, Ed	2019-09-11	POP
■ Bridge Deck Chloride Testing	Blower, Andrew	2019-09- 10	7.
▶ Installation of Very Early LMC Overlays	Martens, Pat	2019-09- 10	TO MAKE
■ UHPC Overlay Solutions	Nault, Gregory	2019-09- 10	7.
NDE & Materials Testing for Bridge Deck Condition & Service Life Assesment for Asset Planning	Boone, Shane	2019-05-15	POP MANA
Panel Discussion: Deck Preservation Treatments	Henning, Brandon; McDowell, Herbert; Hardan, Chris	2019-05-15	
National Working Group: Bridge Deck Chloride Testing	Kinney, Travis	2019-05-15	TO S

OVERVIEW

GEOSPRAY

High-Performance Geopolymer Mortar

WHAT IS A GEOPOLYMER?

Not a Plastic

Not HDPE/PVC/Epoxy

Looks and feels like cement

- Workability
- Material Properties
- Service Life

Chemical structure like natural stone

- Monolithic
- Durable
- Corrosion Resistant

CHEMISTRY PRIMER: OPC VS GEOPOLYMERS

$$H_2O$$
 O $Ca(OH)_2$ O H_2O
 Ca^{2+} O Si O Ca^{2+}
 H_2O O H_2O

Typical Hydrated OPC Structure

Typical Geopolymer Structure

GEOSPRAY ADVANTAGES: SUMMARY

Geopolymer material solutions offer significant chemical, physical, environmental, and economic advantages over traditional materials.

	Portland Cement	Competing Geopolymers	GeoSpray®
Specific Strength	Variable	Excellent	Excellent
Early Strength	Low	High	High
Acid Resistance	Poor	Very Good	Very Good
Self-Adhesion	Low	Low	High
Flexural Strength	Low	Low	High
CO ₂ Emissions	High	Low	Low
Single Pass Thickness	X	X	2X-3X
Total Installed Cost	\$\$	\$\$	\$

GEOPOLYMER MARKETS

Pipe Rehabilitation

- Storm Water Culverts
- Sewers & Manholes
- Potable Water

Transportation

Tunnels and Bridges

Buildings and Structures

- Commercial
- Industrial

GEOSPRAY MORTAR

GeoSpray geopolymer is a high-performance fiber reinforced mortar specifically designed for structural rehabilitation.

- This high strength, ultra-low porosity material is made from natural mineral polymers and recycled industrial waste streams.
- It is designed for use through multiple application techniques including pouring, placing, troweling, spraying, or centrifugal casting.

GEOSPRAY GEOPOLYMER MORTAR: PHYSICAL PROPERTIES

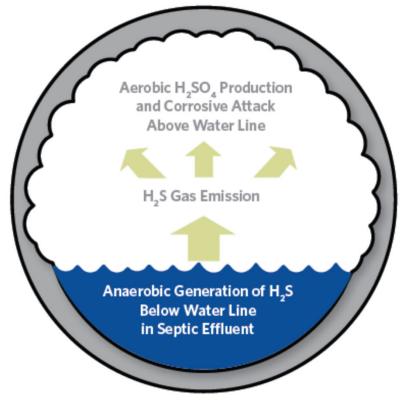
Test Method	Duration	GeoSpray	Conventional Repair Mortar
Compressive Strength	1 Day	Min. 2,500 psi / 17 MPa	5000 psi / 34 MPa
ASTM C-39/C-109	28 Days	Min. 8,000 psi / 55 MPa	
Flexural Strength	7 Day	750 psi / 5.2 MPa	500 psi / 3.4 MPa
ASTM C-78	28 Days	1500 psi / 10.3 MPa	
Modulus of Elasticity	1 Day	3,000,000 psi / 20700 MPa	3,000,000 psi / 20700 MPa
ASTM C-469	28 Days	5,800,000 psi / 40000 MPa	
Bond Strength to Concrete	1 Day	Min 900 psi / 6.2 MPa	N/A
ASTM C-882	28 Days	Min. 2,500 psi / 17 MPa	
Set Time ASTM C-807	Initial Set	60 - 75 Minutes	120 Minutes
Initial Cure Time	Final Set	90 - 110 Minutes	300 minutes
Freeze Thaw Durability	300 Cycles	100%	80% to 90%
ASTM C-666		Zero loss	10% to 20% degradation
Shrinkage ASTM C-1090	28 Days	0.00% @ 65% R. H.	0.35% to 0.50% Shrinkage
Tensile Strength ASTM C-496	28 Days	Min. 800 psi / 5.5 MPa	400 psi / 2.7 MPa
Abrasion Resistance ASTM C-1138	5 Cycles @ 28 Day Maturity	2.7% Loss	4.7% Loss
Rapid Chloride Ion Permeability ASTM C-1202	28 Days	Very Low	N/A

GEOSPRAY MORTAR ADVANTAGES:

Self Bonding

Experimental Parameters:

- On the first day a series of 2" by 4" cylinders were cast half full and cured with on an approximately 45 angle.
- On subsequent days (1, 7, 14 and 28) the top half of the cylinders were cast and filled creating a 45 angled joint in the center of the cylinders
- Compressive strength tests were conducted 28 days after the top half of the cylinders were cast.



Joint in Tested Sample

GEOSPRAY MORTAR ADVANTAGES:

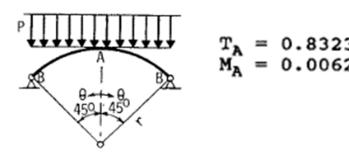
Corrosion Resistance

Microbial-Induced-Corrosion (MIC) Mechanism

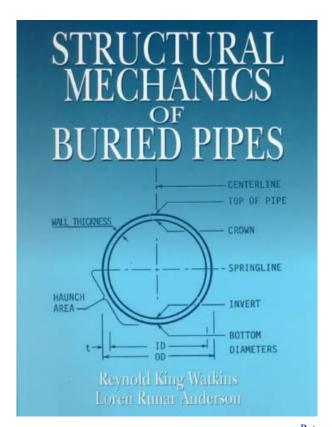
GEOSPRAY MORTAR ADVANTAGES:

Corrosion Resistance

- The chemical make-up of GeoSpray geopolymer makes it inherently acid resistant to the MIC mechanism found in many sewer environments.
- Geopolymers (dependent on the exact formulation) will contain greatly reduced concentrations of Ca(OH)₂ (calcium hydroxide) essentially the acid corrosion mechanism found in many typical cements.
- GeoSpray and GeoSpray HCE geopolymer mortars have been tested to ASTM C267 and certified to German Standard DIN19573 - the most controlled and stringent testing for microbial induced corrosion standard in practice today.

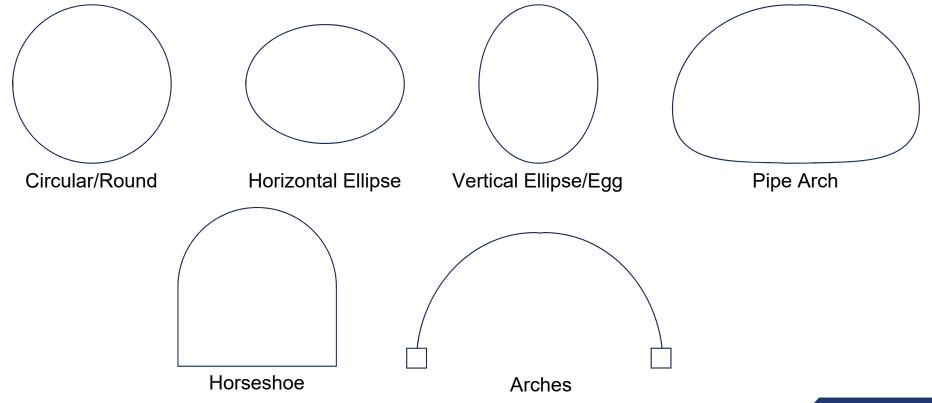

DESIGN METHODOLOGY

GEOSPRAY: A NEW PIPE WITHIN AN OLD PIPE



DESIGN METHODOLOGY: BASIC ASSUMPTIONS

The resultant solution for this case is:


$$t = \sqrt{\frac{0.0744 \, P \, r^2}{S_F} \frac{N}{C}}$$

DISTRIBUTED LOAD ACROSS A FIXED ARCH

The Design Method is not specific to Round, but valid for any arched structure

LA TECH – TTC: EXPERIMENTAL PARAMETERS

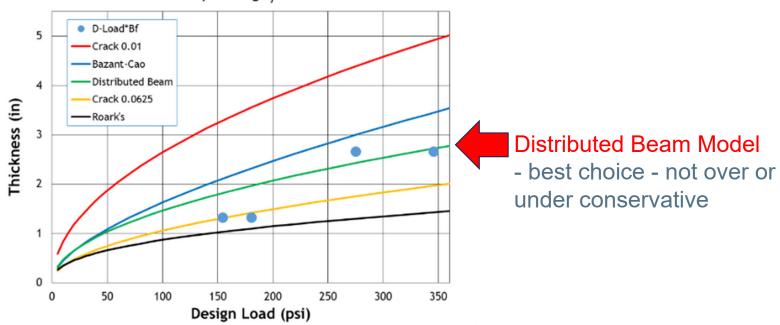
The pipes were then rehabilitated using GeoSpray geopolymer via a spin casting method; vertical application was used to keep sonotubes in shape

LA TECH – TTC: EXPERIMENTAL PARAMETERS

The full suite of rehabilitated pipes

LA TECH – TTC: EXPERIMENTAL PARAMETERS

Each pipe was then pre-stressed until a D-Load crack was present in the crown, invert and the external side of both spring-lines



Source - NASST No DIG 2016, Dallas TX - Paper No WM-T6-03 (Royer & Allouche)

RCP DATA -VS- 5 MODEL PREDICTIONS - 48" PIPE

Comparison of Model Thickness Predictions to Scaled D-Load Test Data for RCP Pipes using B_f =1.5 at 48 Inch Diameter

PIPE REHABILITATION WITH GEOSPRAY MORTAR

AVOID COSTLY AND DISRUPTIVE ROAD CLOSURES WITH GEOSPRAY TRENCHLESS CULVERT REMEDIATION

GEOPOLYMERS: SPIN CASTING PROCESS

Spin Casting of GeoSpray

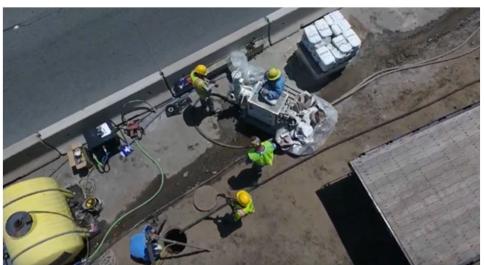
- Rapidly distributes material within the pipe's internal circumference.
- Forms a strong, low permeability, mortar lining.
- Depending upon design & thickness, creates a "pipe within a pipe"
- Typical engineering design does not rely on the integrity of the host structure.
- Compatible with most common reinforcement technologies.

GEOPOLYMERS: CENTRIFUGAL CASTING EQUIPMENT

Air Driven

Mechanical / Electrical

GEOPOLYMERS: HAND SPRAY APPLICATION

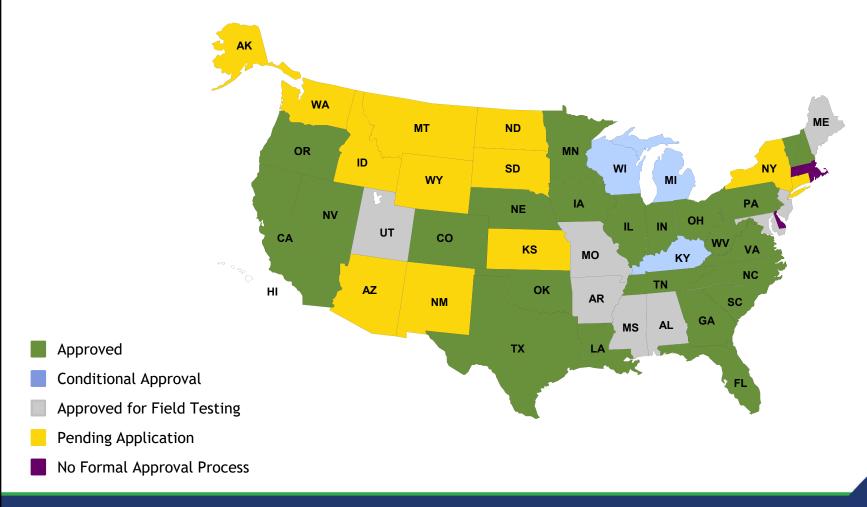


GEOPOLYMERS APPLICATION ADVANTAGE:

Footprint

Small equipment footprint allows for flexibility & planning around client needs.

CIPP OVER THE HOLE WET OUT:


Footprint

10' Diameter CIPP Wet Out Footprint – 3 to 4 traffic lanes

GEOSPRAY DOT APPROVALS: JANUARY 2022

SPRAY APPLIED CONDUIT APPLICATIONS

ROUND 9' DIAMETER CMP CULVERT

Existing Culvert Condition

After 2" Lining

14' SPAN MULTIPLATE ARCH CULVERT

Existing Arch on Spread Footings

Completed 5" Lining

12' SPAN MULTIPLATE PIPE ARCH

Existing Condition

5' MASONRY ARCH CULVERT

Initial Culvert Conditions

Completed 1.75" Lining

84" ELLIPTICAL RCP CULVERT

Pipe was in Moderate Condition

Completed 1.5" Lining

8'X8' CONCRETE BOX CULVERT

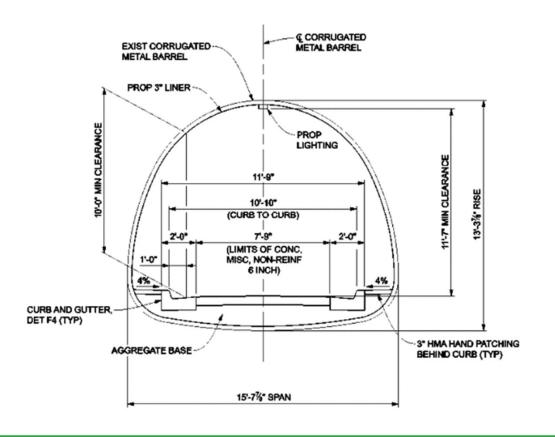
Initial Condition

FEDERAL PRISON ROAD STRUCTURE UNDER US-23 MILAN, MICHIGAN

STRUCTURAL PLATE ARCH UNDERPASS COMPLETED – OCTOBER 2022

Project Details:

Federal Prison Road under US 23 in Washtenaw County


- Multi-Plate Pipe Arch
 - 170 Linear Feet of Structural Metal Plate
 - 15 ft 8 inches Span
 - 13 ft 4 inches Height
- Originally Constructed in 1962
- Sever Corrosion in Invert and Haunch Areas
- Single Lane Vehicular Underpass

Contractor – MCSP

Cross Section of Proposed Multiplate Arch Repair:

US 23 Repair case study: milan, mi

US 23 Repair case study: milan, mi

Unofficial Request for Action Project Process

- Oh No! How are we going to fix this?
- Ask the Region Support Unit
- Ask the TSP2 Partners
- Reach out to Industry
- Develop Repair Estimates
- Program
- Develop Unique Special Provisions

Develop a Unique Special Provision

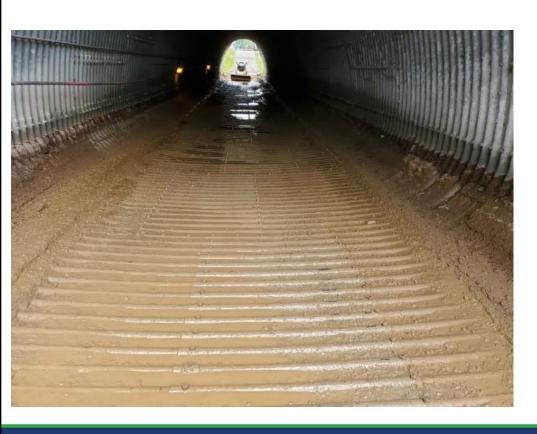
- Ask Industry for a sample specification
- Ask the TSP2 Partners if they have an SP
- Write the Special Provision with Chapter 11 of the Road Design Manual Open
- Read every quoted ASTM
- Review, Review
- 20SM401(A005) Geopolymer Spray Applied Structural Liner for Job Number 210422

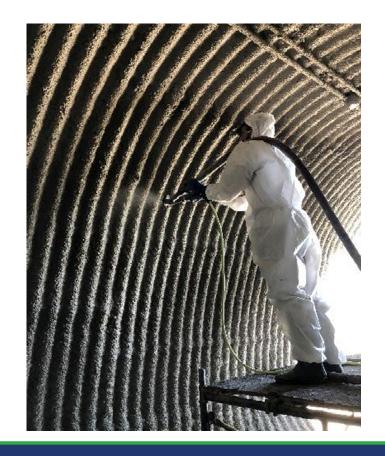
Develop a Unique Special Provision

- **c. Construction.** Obtain from the manufacturer the design for the geopolymer liner, that meets the following conditions:
 - 1. HS-20 live loading.
 - 2. A thickness assuming a fully deteriorated pipe condition with no bonding to the original pipe wall.
 - 3. Water table is assumed at the ground surface above the pipe.
 - 4. All design calculations sealed by a Professional Engineer licensed in the State of Michigan. Base the design on a factor of safety of at least 2.0.

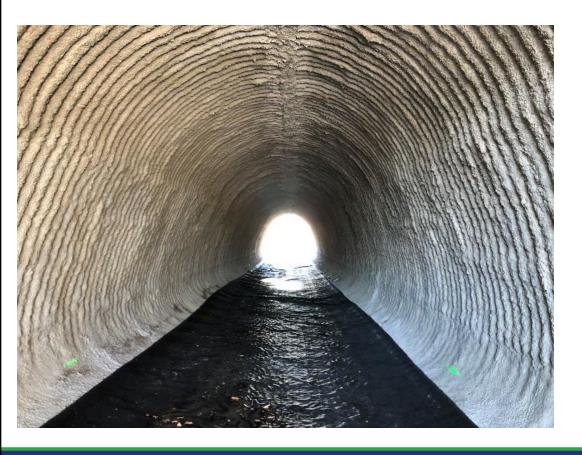
Develop a Unique Special Provision

- 5. Chemical analysis report.
- 6. Written installation plan approved by the manufacturer.
- 7. Method to verify applied thickness during installation.
- 8. Verification that applicators are certified by the manufacturer for installation of the geopolymer liner on large diameter corrugated metal pipes of similar size. Applicators must have worked on at least five projects of similar scope and complexity.
- 9. Certification that the proposed liner will have a design life of at least 50 years.


Existing Corrosion & Pitting in Invert Haunch Areas:


Exposing Pipe Invert after Removal of Existing Roadway Pavement:

Spray Lining of Underpass Walls:


Spray Lining of Underpass Invert:

Installed Sub-Pavement Geotextile

Rehabilitated Underpass with Poured Concrete Pavement:

MDOT Lessons Learned

- Construction Office Questions not addressed in Special Provision
 - Testing Frequency?
 - Testing Type?
 - Sampling Requirements?
 - Mitigation Requirements for a failed test? (No test failed during trial project)
 - Do we need a geotextile separator between new concrete road and geopolymer? (One was added to job)
 - What about other defects, such as allowable cracking? Seepage? Honeycombing?
- Set clear project expectations with manufacturer
- Follow up with CSD before advertisement. Spray applied liners have no prequalification classification. (Initial Advertisement was Fa – Bridge and Ea – Grading, Drainage Structure and Aggregate).

MDOT Lessons Learned

- Set clear project expectations with manufacturer
- Follow up with CSD before advertisement. Spray applied liners have no prequalification classification. (Initial Advertisement was Fa – Bridge and Ea – Grading, Drainage Structure and Aggregate).

Challenges and Lessons Learned:

- Active Infiltration Control
- Invert Patching and Infiltration Sealing
- Post Lining Infiltration Sealing
- Suggest Requiring Broom Finish on Future Vehicular or Pedestrian Underpass Linings

THANK YOU

